

ACHIEVING 300 BUSHEL-PER-ACRE CORN SUSTAINABLY

Laura F. Gentry and Fred E. Below

Research Asst. Professor & Professor

University of IL Urbana-Champaign

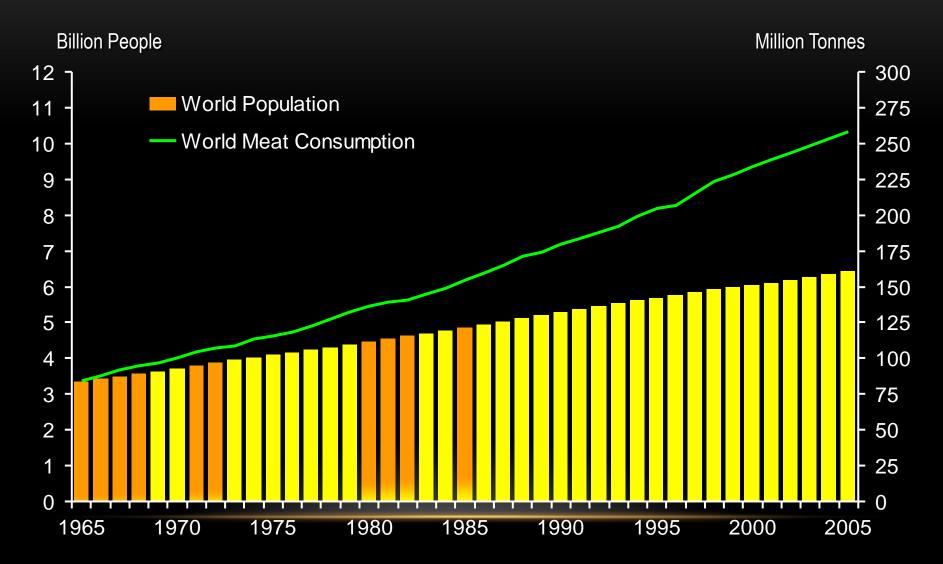
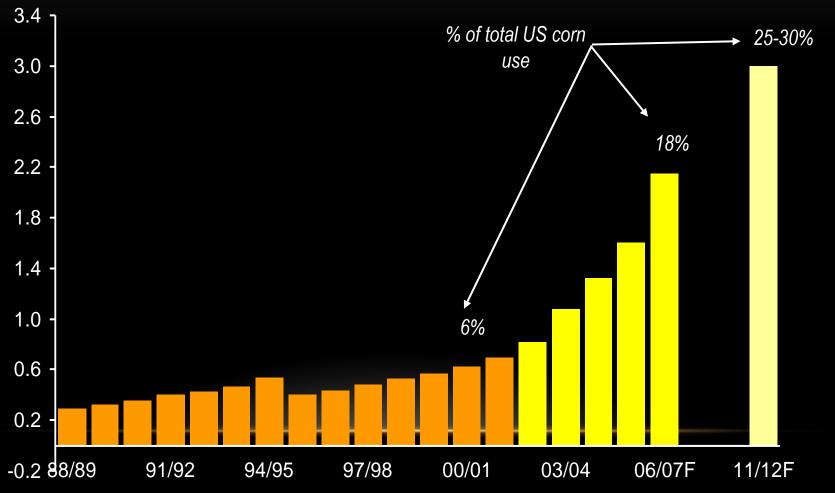

Fluid Fertilizer Foundation Forum Feb. 21-22, 2011 Scottsdale, AZ

Image: Nuulaa.visualsociety.com

THE FIRST QUESTIONS TO PONDER:


- Do we really need to grow more corn?
- Must high-yielding production systems necessarily be less sustainable than conventional?
- How far can we *sustainably* push corn yields?

WORLD POPULATION GROWTH AND MEAT CONSUMPTION

US CORN GRAIN USED FOR ETHANOL

Billion Bushels

Source: USDA, PotashCorp

DO WE REALLY NEED TO GROW MORE CORN?

- Yes, IF...
- IF populations projections are correct and
- IF per capita grain consumption is maintained or increases
- And if so...we must grown corn more intensively than our conventional systems

AGRICULTURAL SUSTAINABILITY:

A system of crop and animal production that, over the long term,

- Satisfies human food, fiber, forage, and fuel needs,
- Sustains the economic vitality of farm operations,
- And maintains or improves
 - Soil organic matter
 - Soil structure
 - Water quality

3 FACTORS OF SUSTAINABILITY

- Maintains or improves
 - Soil Organic Matter (increase soil C sequestration/reduce GHG emissions)
 - Why? Improves soil physical, chemical, and biological properties
 - How to achieve? 1 : Increase plant population & yield & reduce tillage; 2 : reduce number of passes across fields, increase organic inputs

MAINTAINS OR IMPROVES

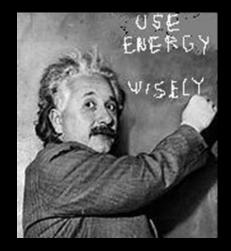
"The wealth of Illinois is in her soil and her strength lies in its intelligent development" –Draper -Davenport Hall (Old Agriculture Building), UIUC

- Soil Structure
 - Why?
 - Reduces soil erosion; reduces soil compaction; improves drainage; provides plant-available water; supports a diverse microbial and invertebrate community
 - How to achieve? Reduced tillage systems, controlled traffic patterns, & increasing SOM

3 FACTORS OF SUSTAINABILITY

- Maintains or improves
 - Water quality
 - Why? Agriculture identified as largest non-point source of nutrient pollution to surface & ground waters
 - How to achieve? Increase nutrient uptake efficiency & use by improving NUE, optimizing placement of inputs, & providing the best root environment

MUST INTENSIVE CORN PRODUCTION BE LESS SUSTAINABLE THAN CONVENTIONAL?

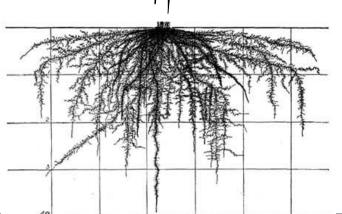

Image: Visitsaltlake.com

OBSERVATIONS: WHY IT MIGHT MAKE SENSE TO INTENSIFY CORN PROD'N

- Improved input uptake efficiency @ high plant pop'ns
- Increased plant pop'ns (yield) = greater C sequestration
- More stover to use for biofuel production while roots and exudates maintain/build SOM levels
- U.S. maize production has one of the highest N uptake efficiencies in large-scale cereal crop production
- In terms of grain yield per unit area, wheat and rice produce about 2/3 of corn yield

ASSESSING AGRICULTURAL SUSTAINABILITY

- We propose: Assessing agricultural sustainability in terms of the ENERGY RESOURCES we produce today and preserve for future generations
- Produce Energy
 - Food & Fuel for today's needs
- Preserve Energy and Resources
 - Fossil fuels
 - A highly productive soil resource
 - High-quality water


ALL CORN BIOMASS CONTAINS ENERGY

GRAIN

- 70% starch
- 8% protein
- 5% oil
- SHORT TERM E

STOVER

- Bioenergy
- Animal Feed
- SOM
- SHORT & LONG TERM E

BELOW GROUND CARBON

- Roots & Exudates
- SOM
- Priming for nutrient cycling LONG TERM (SUSTAINABLE) E

CARBON FRACTION ENERGY EFFICIENCY (CFEE)

CFEE – an accounting system for balancing today's agricultural production costs with tomorrow's production potential

• Net E required to capture carbon in the whole plant

and

 Partial energies associated with short-term and long-term (sustainable) plant fractions

IN CONCLUSION

- Intensive crop management has the potential to increase crop yields to 300+ bushel per acre
- Evaluate fundamental questions regarding sustainability potential of high-yielding corn systems
- Hypothesis: High-yield corn environments can be more environmentally sustainable than current production systems
- Results will allow comparison of high-yield and conventional systems for both yield potential & sustainable production

Acknowledgements

Personnel

Adam HenningerMatías Ruffo

Brad Bandy
Tom Boas
Ryan Becker
Ross Bender
Fernando Cantao
Jason Haegele
Mark Harrison
Jim Kleiss
Bianca Moria
Juliann Seebauer
Martín Uribelarrea
Mike Vincent

Financial Support

•AGCO •AgroFresh AGROTAIN BASF Dawn Equipment Dow AgroSciences •GrowMark Honeywell Monsanto •Mosaic Pioneer •Rosen's Inc. Syngenta •Valent BioSciences WinField Solutions